Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 716: 150026, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701557

RESUMO

BACKGROUND: Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS: Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS: G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION: Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.

2.
Iran J Basic Med Sci ; 27(3): 343-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333748

RESUMO

Objectives: Bevacizumab is a commonly used anticancer drug in clinical practice, but it often leads to adverse reactions such as vascular endothelial damage, hypertension, arterial and venous thrombosis, and bleeding. This study investigated the protective effects of metformin against bevacizumab-induced vascular injury in a mouse model and examined the possible involvement of GDF15/PI3K/AKT/FOXO/PPARγ signaling in the effects. Materials and Methods: C57 male mice were purchased. To investigate metformin, the mice were assigned to the saline, bevacizumab (15 mg every 3 days), metformin (1200 mg/day), and bevacizumab+metformin groups. To investigate GDF15, the mice were assigned to the siNC+bevacizumab, siNC+bevacizumab+metformin, siGDF15+bevacizumab, and siGDF15+bevacizumab+metformin groups. Histological staining was used to evaluate vascular injury. Flow cytometry was used to evaluate apoptosis. ELISA was used to measure plasma endothelial injury markers and proinflammatory cytokines. qRT-PCR and western blot were used to determine the expression of GDF15 and PI3K/AKT/FOXO/PPARγ in aortic tissues. Results: Metformin alleviated bevacizumab-induced abdominal aortic injury, endothelial cell apoptosis, and systemic inflammation in mice (all P<0.05). Metformin up-regulated GDF15 expression and PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). siGDF15 abolished the vascular protective and anti-inflammatory effects of metformin (all P<0.05). siGDF15 suppressed PI3K/AKT/FOXO/PPARγ signaling in the abdominal aorta of mice treated with bevacizumab (all P<0.05). Conclusion: Metformin attenuates bevacizumab-induced vascular endothelial injury, apoptosis, and systemic inflammation by activating GDF15/PI3K/AKT/FOXO/PPARγ signaling.

3.
Braz J Cardiovasc Surg ; 38(5): e2023144, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37871254

RESUMO

OBJECTIVE: To investigate the risk factors for predicting atrial high-rate episodes (AHREs) detected by cardiac implantable electronic devices (CIEDs). METHODS: A total of 140 patients with CIED in our hospital from June 2013 to June 2018 were included and were followed up to observe whether they had AHREs. AHRE are defined as atrial rate ≥ 175 times/minute, lasting > 5 minutes, and reviewed by an experienced electrophysiologist with unclear clinical diagnosis. The patients fasted for 12 hours after implantation, and blood samples were collected for biochemical, lipid, and whole blood count detection. Follow-up was regular after discharge to record follow-up data of each patient and conduct statistical analysis. RESULTS: One hundred and forty patients were implanted with dual-chamber pacemakers, their median age was 70 years old, 44.29% were male, 27 patients had AHRE within one year, and AHRE incidence rate was 19.29%. The microcytic to hypochromic (M/H) ratio was calculated for all AHRE patients and compared with the patients without AHRE; the M/H value of AHRE patients was significantly higher. Throughout the entire follow-up period, a total of 44 patients developed AHRE; when adjusted by multivariate analysis, only M/H ratio ≥ 4.5 vs. < 4.5 had statistical significance, and the adjusted hazard ratio value was 4.313 (1.675-11.105). CONCLUSION: As an indicator, M/H ratio may play an important role in the occurrence and development of atrial fibrillation and can be used as a predictor of AHRE in patients with CIED.


Assuntos
Fibrilação Atrial , Desfibriladores Implantáveis , Marca-Passo Artificial , Acidente Vascular Cerebral , Humanos , Masculino , Idoso , Feminino , Fibrilação Atrial/complicações , Monócitos , Desfibriladores Implantáveis/efeitos adversos , Átrios do Coração , Marca-Passo Artificial/efeitos adversos , Fatores de Risco , Acidente Vascular Cerebral/etiologia
4.
Immunol Lett ; 263: 1-13, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704178

RESUMO

BACKGROUND: Synovial fibroblasts are critical for maintaining homeostasis in major autoimmune diseases involving joint inflammation, including osteoarthritis and rheumatoid arthritis. However, little is known about the interactions among different cell subtypes and the specific sets of signaling pathways and activities that they trigger. METHODS: Using social network analysis, pattern recognition, and manifold learning approaches, we identified patterns of single-cell communication in OA (osteoarthritis) and RA (rheumatoid arthritis). RESULTS: Our results suggest that OA and RA have distinct cellular communication patterns and signaling pathways. The LAMININ (Laminin) and COLLAGEN (Collagen) pathways predominate in osteoarthritis, while the EGF (Epidermal growth factor), NT (Neurotrophin) and CDH5 (Cadherin 5) pathways predominate in rheumatoid arthritis, with a central role for THY1 (Thy-1 cell surface antigen) +CDH11 (Cadherin 11) + cells. The OA opens the PDGF (Platelet-derived growth factors) pathway (driver of bone angiogenesis), the RA opens the EGF pathway (bone formation) and the SEMA3 (Semaphorin 3A) pathway (involved in immune regulation). Interestingly, we found that OA no longer has cell types involved in the MHC complex (Major histocompatibility complex) and their activity, whereas the MHC complex functions primarily in RA in the presentation of inflammatory antigens, and that the complement system in OA has the potential to displace the function of the MHC complex. The specific signaling patterns of THY1+CDH11+ cells and their secreted ligand receptors are more conducive to cell migration and lay the foundation for promoting osteoclastogenesis. This subpopulation may also be involved in the accumulation of lymphocytes, affecting the recruitment of immune cells. Members of the collagen family (COL1A1 (Collagen Type I Alpha 1 Chain), COL6A2 (Collagen Type VI Alpha 2 Chain) and COL6A1 (Collagen Type VI Alpha 1 Chain)) and transforming growth factor (TGFB3) maintain the extracellular matrix in osteoarthritis and mediate cell migration and adhesion in rheumatoid arthritis, including the PTN (Pleiotrophin) / THBS1 (Thrombospondin 1) interaction. CONCLUSION: Increased understanding of the interaction networks between synovial fibroblast subtypes, particularly the shared and unique cellular communication features between osteoarthritis and rheumatoid arthritis and their hub cells, should help inform the design of therapeutic agents for inflammatory joint disease.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Membrana Sinovial , Fator de Crescimento Epidérmico/metabolismo , Laminina/metabolismo , Colágeno Tipo VI/metabolismo , Comunicação Celular , Fibroblastos , Comunicação
5.
Genes Immun ; 24(4): 159-170, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422588

RESUMO

The current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers. The results showed that a total of 19 cuproptosis- and ferroptosis-related genes (CFRGs) were differentially expressed between the healthy and AMI groups. Functional enrichment analysis showed that the differential CFRGs were mostly enriched in biological processes related to oxidative stress and the inflammatory response. The immune infiltration status analyzed by ssGSEA found elevated levels of macrophages, neutrophils, and CCR in AMI. Then, we screened 6 immune-related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, STAT3) to construct a nomogram for predicting AMI and validated it in the GSE109048 dataset. Moreover, we also identified 5 pivotal miRNAs and 10 candidate drugs that target the 6 feature genes. Finally, RT-qPCR analysis verified that all 6 feature genes were upregulated in both animals and patients. In conclusion, our study reveals the significance of immune-related CFRGs in AMI and provides new insights for AMI diagnosis and treatment.


Assuntos
Apoptose , Ferroptose , Infarto do Miocárdio , Animais , Biomarcadores , Ferroptose/genética , Genes cdc , Macrófagos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Cobre
6.
PLoS One ; 18(2): e0280656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730356

RESUMO

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Ratos , Gencitabina , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Regulação para Baixo , Cardiotoxicidade/etiologia , Células HEK293 , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
7.
Int J Mol Med ; 51(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734284

RESUMO

Compound Kushen injection (CKI) is a type of traditional Chinese medicine that has previously been studied for the treatment of various types of cancer. Previous studies have reported that CKI regulates cell apoptosis by downregulating the PI3K/Akt pathway. The present study aimed to determine whether CKI alleviates heart failure (HF) by attenuating cardiomyocyte apoptosis via the inhibition of the PI3K/Akt pathway. Angiotensin II (Ang II) was used to elicit HF, and osmotic minipumps with either Ang II (2 µg/kg/day) or phosphate­buffered saline (PBS; 200 µl) were subcutaneously implanted into 6­week­old male C57BL/6 mice for 3 weeks. In addition, PBS or CKI (25 mg/kg/day) were subcutaneously infused once a day for 3 weeks. Echocardiography was used to examine hemodynamics. The myocardial injury biomarkers, cardiac troponin I and N­terminal (NT)­pro hormone B­type natriuretic peptide, were assessed using enzyme­linked immunosorbent assay. Transmission electron microscopy was used to determine the morphology of the myocardium. The rate of apoptosis was detected using TUNEL staining and flow cytometry (FCM), and the expression levels of apoptosis­related proteins were measured using western blot (WB) analysis. Moreover, H9C2 cells were treated with CKI (2 mg/ml) or LY294002 (an inhibitor of the PI3K/Akt pathway; 25 µmol/l) in combination with Ang II (1 µmol/l) for 48 h. Cell Counting Kit­8 assay, FCM and WB analysis were performed in the H9C2 cells to examine cell viability, cell cycle distribution and representative signaling proteins. It was found that CKI promoted healthy cardiac function, reduced myocardial structural damage and reduced the rate of cardiomyocyte apoptosis. CKI markedly attenuated the expression of apoptosis­related proteins in the PI3K/Akt pathway. The results of the in vitro experiments indicated that CKI promoted cardiomyocyte proliferation and inhibited apoptosis, similar to LY294002. On the whole, the present study demonstrates that CKI reduces cardiomyocyte apoptosis, promotes healthy cardiac function and attenuates Ang II­mediated HF. These ameliorative effects may be associated with the inhibition of the PI3K/Akt pathway.


Assuntos
Antineoplásicos , Insuficiência Cardíaca , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Antineoplásicos/farmacologia
8.
Rev. bras. cir. cardiovasc ; 38(5): e2023144, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521662

RESUMO

ABSTRACT Objective: To investigate the risk factors for predicting atrial high-rate episodes (AHREs) detected by cardiac implantable electronic devices (CIEDs). Methods: A total of 140 patients with CIED in our hospital from June 2013 to June 2018 were included and were followed up to observe whether they had AHREs. AHRE are defined as atrial rate ≥ 175 times/minute, lasting > 5 minutes, and reviewed by an experienced electrophysiologist with unclear clinical diagnosis. The patients fasted for 12 hours after implantation, and blood samples were collected for biochemical, lipid, and whole blood count detection. Follow-up was regular after discharge to record follow-up data of each patient and conduct statistical analysis. Results: One hundred and forty patients were implanted with dual-chamber pacemakers, their median age was 70 years old, 44.29% were male, 27 patients had AHRE within one year, and AHRE incidence rate was 19.29%. The microcytic to hypochromic (M/H) ratio was calculated for all AHRE patients and compared with the patients without AHRE; the M/H value of AHRE patients was significantly higher. Throughout the entire follow-up period, a total of 44 patients developed AHRE; when adjusted by multivariate analysis, only M/H ratio ≥ 4.5 vs. < 4.5 had statistical significance, and the adjusted hazard ratio value was 4.313 (1.675-11.105). Conclusion: As an indicator, M/H ratio may play an important role in the occurrence and development of atrial fibrillation and can be used as a predictor of AHRE in patients with CIED.

9.
Dis Markers ; 2022: 7172583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968506

RESUMO

Objective: MicroRNAs have been revealed to be involved in the development of atherosclerosis. The present study is aimed at exploring the potential of miR-99a-5p as a therapy for atherosclerosis. We suspected that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy via constraining mTOR, therefore, alleviating atherosclerosis. Methods: The cell viability in ox-LDL-induced THP-1 macrophages was assessed by CCK-8 assay. Bioinformatic analysis was used to predict the target genes of miR-99a-5p. The binding between miR-99a-5p and mTOR was confirmed by luciferase reporter assay. In vivo, a high-fat-diet-induced atherosclerosis model was established in apolipoprotein E knockout mice. Hematoxylin-eosin, oil red O, and Sirius red staining were performed for the determination of atherosclerotic lesions. MTOR and associated protein levels were detected by Western blot analysis. Results: miR-99a-5p inhibited NLRP3 inflammasome activation and promoted macrophage autophagy by targeting mTOR. Enforced miR-99a-5p significantly reduced the levels of inflammasome complex and inflammatory cytokines. Furthermore, miR-99a-5p overexpression inhibited the expression of mTOR, whereas mTOR overexpression reversed the trend of the above behaviors. In vivo, the specific overexpression of miR-99a-5p significantly reduced atherosclerotic lesions, accompanied by a significant downregulation of autophagy marker CD68 protein expression. Conclusion: We demonstrated for the first time that miR-99a-5p may be considered a therapy for atherosclerosis. The present study has revealed that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy by targeting mTOR, therefore, alleviating atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Serina-Treonina Quinases TOR , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/terapia , Autofagia , Inflamassomos/genética , Inflamassomos/imunologia , Lipoproteínas LDL , Macrófagos/imunologia , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
10.
Oxid Med Cell Longev ; 2022: 1889632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656026

RESUMO

Inducible degrader of low-density lipoprotein (LDL) receptor (Idol) is an E3 ubiquitin ligase coded by Idol, the target gene of liver X receptor (LXR), which primarily mediates the ubiquitination and lysosomal degradation of low-density lipoprotein receptor (LDLR). Previous studies from independent groups have shown that plasma cholesterol regulation by the LXR-Idol-LDLR axis is tissue- and species-specific, indicating that the precise molecular mechanism by which Idol modulates lipid metabolism has not been completely understood and needs to be further validated in other species. Hamster, a small rodent animal model expressing endogenous cholesterol ester transfer protein (CETP), possesses many metabolic characteristics that are different from mouse but similar to human. In this study, an Idol knockout (Idol-/-) hamster model was developed using CRISPR/Cas9 gene editing system to investigate the effect of Idol depletion on plasma lipid metabolism and atherosclerosis. Our results showed that there were no significant differences in hepatic LDLR protein and plasma cholesterol levels in Idol-/- hamsters compared with wild-type (WT) controls, which was consistent with the observation that LXR agonist treatment increased the expression of Idol mRNA in the small intestine but not in the liver of WT hamsters. However, we found that plasma triglyceride (TG) levels were significantly reduced in Idol-/- hamsters due to an enhancement of TG clearance. In addition, the morphological data demonstrated that inactivation of Idol significantly lowered plasma total cholesterol and TG levels and protected against spontaneous atherosclerotic lesions in aged LDLR knockout hamsters on a chow diet but had no effect on diet-induced atherosclerosis in hamsters lacking one copy of the Ldlr gene. In conclusion, our findings suggest that Idol can regulate plasma lipid metabolism and atherosclerosis independent of LDLR function.


Assuntos
Aterosclerose , Hiperlipoproteinemia Tipo II , Animais , Colesterol , Cricetinae , Modelos Animais de Doenças , Lipoproteínas LDL , Receptores X do Fígado , Camundongos
11.
Mol Biol Rep ; 49(7): 6341-6355, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513634

RESUMO

BACKGROUND: G-protein-coupled ER (GPR30) plays an important role in cardioprotection. Recent studies have shown that the GPR30-specific agonist G-1 reduces the degree of myocardial fibrosis in rats with myocardial infarction, reduces the morbidity associated with atrial fibrillation, and inhibits the proliferation of cardiac fibroblasts in animal experiments. Nevertheless, the underlying mechanism of myocardial fibrosis and atrial fibrillation remains unclear. In this study, we explored the mechanism underlying the effect of GPR30 on atrial fibrosis and atrial fibrillation in OVX mice. METHODS: We established an animal model of atrial fibrillation induced by Ang II (derived from OVX C57BL/6 female mice) and observed the role of G-1 in cardiac function by echocardiography, hemodynamics, morphology and fibrosis-related and apoptosis-related protein expression by Masson's trichrome, immunofluorescence, western blotting and TUNEL staining. RESULTS: Echocardiography and body surface ECG showed that G-1 combined with Ang II significantly reduced atrial fibrosis and atrial fibrillation compared to Ang II alone. The G-1 treatment group exhibited changes in the mRNA and protein expression of apoptosis-related genes. Moreover, G-1 treatment also altered the levels of inflammation-related proteins and mRNAs. In primary cultured cardiac fibroblasts (CFSs), proliferation was significantly increased in response to Ang II, and G-1 inhibited cell proliferation and apoptosis. CONCLUSION: GPR30 is a potential therapeutic target for alleviating atrial fibrosis in OVX mice by upregulating Smad7 expression to inhibit the TGF-ß/Smad pathway.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/metabolismo , Animais , Fibrilação Atrial/patologia , Cardiomiopatias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Eur Heart J Cardiovasc Pharmacother ; 8(8): 806-814, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-35438151

RESUMO

AIMS: Vicagrel, a novel antiplatelet prodrug to overcome the residual high platelet reactivity of clopidogrel induced by inactive metabolism and cytochrome P450 (CYP) 2C19 polymorphisms, provides favourable antiplatelet inhibition in healthy volunteers. However, its antiplatelet effect and safety in patients with coronary artery disease (CAD) are unclear. METHODS AND RESULTS: This was a multicentre, randomized, double-blind, triple-dummy, dose-exploring phase II trial comparing the antiplatelet activity and safety of vicagrel at different doses vs. those of clopidogrel in patients with CAD undergoing percutaneous coronary intervention (PCI). The primary endpoint was inhibition of adenosine diphosphate (ADP)-induced platelet aggregation (%IPA) after loading and maintenance doses (LD/MD) at 28 days. Safety endpoints included adverse events (AEs) and Bleeding Academic Research Consortium-defined any bleeding. Pharmacokinetic (PK) profiles and the influence of CYP2C19 polymorphisms were explored in subgroup analysis. Two hundred and seventy-nine patients diagnosed with stable CAD (51.97%), unstable angina (40.86%), and myocardial infarction (7.17%) were randomized to receive vicagrel 20/5 mg (LD/MD), 24/6 mg, or 30/7.5 mg or clopidogrel 300/75 mg in combination with aspirin. %IPAs on Day 28 were 30.19%, 35.02%, 45.61%, and 32.55% for vicagrel 20/5, 24/6, and 30/7.5 mg and clopidogrel, respectively, and were comparable across all groups (P = 0.0694). The plasma concentration of the vicagrel active metabolite M15-2 had a similar area under curve and Tmax to those of clopidogrel. There were no significant differences in AEs (4.35%, 0%, 1.45%, and 5.56% for vicagrel 20/5, 24/6, and 30/7.5 mg and clopidogrel, P = 0.6667) or any bleeding (13.04%, 14.06%, 11.59%, and 11.11% for vicagrel 20/5, 24/6, and 30/7.5 mg and clopidogrel, respectively, P = 0.95) across four groups. %IPAs and PK profiles of vicagrel did not vary significantly among different CYP2C19 metabolizers. CONCLUSION: Vicagrel had comparable antiplatelet effect and safety to clopidogrel in patients with CAD undergoing PCI.


Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Humanos , Clopidogrel/efeitos adversos , Citocromo P-450 CYP2C19/genética , Intervenção Coronária Percutânea/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/terapia , Inibidores da Agregação Plaquetária/efeitos adversos , Hemorragia/induzido quimicamente
13.
Aging (Albany NY) ; 14(4): 1865-1878, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35202001

RESUMO

BACKGROUND: microRNAs (miRNAs) have drawn more attention to the progression of atherosclerosis (AS), due to their noticeable inflammation function in cardiovascular disease. Macrophages play a crucial role in disrupting atherosclerotic plaque, thereby we explored the involvement of miR-223-3p in the inflammatory response in macrophages. METHODS: RT-qPCR was used to analyze the miR-223-3p levels in carotid arteries and serum of AS patients. ROC curve was used to assess the diagnostic value of miR-223-3p. Movat staining was applied to evaluate the morphological differences. FISH was used to identify the expression of miR-223-3p in macrophages of atherosclerotic lesions. Bioinformatic analysis was performed. Double-immunofluorescence and western blot were performed to assess the inflammatory cytokine secretion and p-ERK1/2. C16-PAF was injected into the culture medium of the miR-223-3p mimic/NC-transfected macrophages with ox-LDL. RESULTS: MiR-223-3p was up-regulated in AS patients and was associated with a higher overall survival rate. MiR-223-3p was co-localized with CD68+ macrophages in vulnerable atherosclerotic lesions. MiR-223-3p mimics decreased atherosclerotic lesions, macrophages numbers whereas increased SMCs numbers in the lesions. The TNF-a immune-positive areas were reduced by miR-223-3p mimics. MAP2K1 was negatively associated with miR-223-3p. MiR-223-3p mimics reduced the inflammation and the MEK1/ERK1/2 signaling pathway in vivo and in vitro. C16-PAF reversed the effects of miR-223-3p mimics on inflammation and ERK1/2 signaling pathway. CONCLUSIONS: MiR-223-3p negatively regulates inflammatory responses by the MEK1/ERK1/2 signaling pathway. Our study provides new insight into how miR-223-3p protects against atherosclerosis, representing a broader therapeutic prospect for treating atherosclerosis by miR-223-3p.


Assuntos
Aterosclerose , MicroRNAs , Aterosclerose/metabolismo , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , MicroRNAs/metabolismo
14.
Sci Rep ; 11(1): 11273, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050231

RESUMO

Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and-independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.


Assuntos
Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Óxido Nítrico/fisiologia , Compostos Nitrosos/metabolismo , Compostos Nitrosos/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
15.
J Physiol Sci ; 70(1): 39, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895058

RESUMO

Signal regulators during early cardiogenetic differentiation for the cellular automaticity are largely unknown. Our investigations were designed to clarify the role of transcription factors and their modulators in P19-derived cardiomyocytes to the expression of cardiac pacemaker ion channels. Transcription factors Csx/Nkx2.5 and GATA4 but not MEF2C were markedly inhibited by p38 MAP kinase inhibition in a distinct manner; expression but not phosphorylation of GATA4 was reduced by inhibition of p38 MAP kinase actions. In the presence of an ERK1/2,5 inhibitor PD98059 or a JNK MAP kinase inhibitor SP600125, P19 cells successfully differentiated into cardiomyocytes displaying spontaneous beatings with expression of three types of pacemaker ion channels. We demonstrate that acquisition of cellular automaticity and the expression of pacemaker ion channels are regulated by the transcription factors, Csx/Nkx2.5 and GATA4, through intracellular signals including p38 MAP kinase in the process of P19-derived pluripotent cells differentiation into cardiomyocytes.


Assuntos
Relógios Biológicos , Diferenciação Celular , Frequência Cardíaca , Células-Tronco Pluripotentes Induzidas/enzimologia , Canais Iônicos/metabolismo , Miócitos Cardíacos/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Fator de Transcrição GATA4/metabolismo , Proteína Homeobox Nkx-2.5/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Fenótipo , Fosforilação , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética
16.
Ther Clin Risk Manag ; 12: 1017-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445480

RESUMO

OBJECTIVES: The aim of this study was to investigate the effect of no-reflow phenomenon on ventricular systolic synchrony via myocardial blush grades (MBGs) in patients with acute anterior myocardial infarction after percutaneous coronary intervention (PCI). PATIENTS AND METHODS: All patients were divided into two groups and assessed by MBGs. To observe the parameters of the left ventricular function and left ventricular systolic synchrony, equilibrium radionuclide angiography was performed 1 week after PCI and repeated 6 months after acute myocardial infarction (AMI). Measurement data were compared and analyzed by the Student's t-test, and the count data were evaluated by the χ (2) test. A multivariate regression analysis was performed to assess the contribution of confounding factors. RESULTS: A total of 100 patients were enrolled in this study: 26 in the no-reflow and 74 in the reflow group. There was no significant difference in terms of age, sex, hypertension history, diabetes history, hyperlipidemia history, and smoking history between the two groups. However, the incidence rate of heart failure with Killip's grade ≥2 in the no-reflow group was significantly higher than that in the reflow group (38.46% vs 18.92%, P<0.05). Six months after the AMI-PCI, the left ventricular ejection fraction, peak ejection rate, and peak filling rate in the no-reflow group were significantly lower than those in the reflow group (t=2.21, 2.29, and 2.03, P<0.05 for all comparisons), but the values of the time to peak ejection rate, time to peak filling rate, phase shift, full width at half maximum, and peak phase standard deviation were all higher (t=2.41, 2.46, 2.00, 2.55, and 2.49, P<0.05 for all comparisons), and the incidence rate of major adverse cardiac events in the no-reflow group was also more elevated than that in the reflow group (53.85% vs 8.11%, χ (2)=34.49, P<0.001). CONCLUSION: The no-reflow phenomenon identified by MBGs reflects the no-reperfusion status in the myocardium in the infarction-related zone after AMI. The directly caused reduction in the left ventricular systolic synchrony performance leads to adverse long-term outcomes in patients with AMI.

17.
J Cardiovasc Pharmacol ; 66(3): 316-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25992918

RESUMO

BACKGROUND: Recent evidence indicates that prednisone can potentiate renal responsiveness to diuretics in heart failure (HF). However, the optimal dose of prednisone is not known. METHOD: Thirty-eight patients with symptomatic HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/d, n = 8), medium-dose (30 mg/d, n = 10), or high-dose prednisone (60 mg/d, n = 10), for 10 days. During this time, we recorded the 24-hour urinary output and the 24-hour urinary sodium excretion, at baseline, on day 5 and day 10. We also monitored the change in the concentration of serum creatinine, angiotensin II, aldosterone, high-sensitive C-reactive protein, tumor necrosis factor-α, interleukin 1ß, and interleukin 6. RESULTS: Low-dose prednisone significantly enhanced urine output. However, the effects of medium- and high-dose prednisone on urine output were less obvious. As for renal sodium excretion, high-dose prednisone induced a more potent natriuresis than low-dose prednisone. Despite the potent diuresis and natriuresis induced by prednisone, serum creatinine, angiotensin II, and aldosterone levels were not elevated. These favorable effects were not associated with an inflammatory suppression by glucocorticoids. CONCLUSIONS: Only low-dose prednisone significantly enhanced urine output. However, high-dose prednisone induced a more potent renal sodium excretion than low-dose prednisone.


Assuntos
Diurese/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Rim/efeitos dos fármacos , Prednisona/uso terapêutico , Sódio/urina , Biomarcadores/sangue , Biomarcadores/urina , Citocinas/sangue , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/administração & dosagem , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/urina , Humanos , Rim/fisiopatologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Resultado do Tratamento
18.
Am J Physiol Heart Circ Physiol ; 304(10): H1352-60, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23504177

RESUMO

Oxidative stress plays a major role in the pathogenesis of heart failure, where the contractile response to ß-adrenergic stimulation is profoundly depressed. This condition involves L-type Ca(2+) channels, but the mechanisms underlying their impaired adrenergic regulation are unclear. Thus the present study explored the basis for impaired adrenergic control of Ca(2+) channels in a rat infarction model of heart failure. Patch-clamp recordings of L-type Ca(2+) current (I(Ca,L)) from ventricular myocytes isolated from infarcted hearts showed a blunted response to intracellular cAMP that was reversed by treatment with exogenous pyruvate. Biochemical studies showed that basal and cAMP-stimulated protein kinase A activities were similar in infarcted and sham-operated hearts, whereas molecular analysis also found that binding of protein kinase A to the α(1C) subunit of voltage-gated Ca(2+) channel isoform 1.2 was not different between groups. By contrast, protein phosphatase 2A (PP2A) activity and binding to α(1C) were significantly less in infarcted hearts. The PP2A inhibitor okadaic acid markedly increased I(Ca,L) in sham-operated myocytes, but this response was significantly less in myocytes from infarcted hearts. However, pyruvate normalized I(Ca,L) stimulation by okadaic acid, and this effect was blocked by inhibitors of thioredoxin reductase, implicating a functional role for the redox-active thioredoxin system. Our data suggest that blunted ß-adrenergic stimulation of I(CaL) in failing hearts results from hyperphosphorylation of Ca(2+) channels secondary to oxidation-induced impairment of PP2A function. We propose that the redox state of Ca(2+) channels or PP2A is controlled by the thioredoxin system which plays a key role in Ca(2+) channel remodeling of the failing heart.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Coração/efeitos dos fármacos , Fosfoproteínas Fosfatases/fisiologia , Ácido Pirúvico/farmacologia , Receptores Adrenérgicos beta/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Imunoprecipitação , Masculino , Células Musculares/efeitos dos fármacos , Infarto do Miocárdio/patologia , Oxirredução , Fosforilação , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia
19.
Am J Physiol Cell Physiol ; 297(2): C253-62, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19419996

RESUMO

gamma-Glutamyl transpeptidase (gamma-GT) is a key enzyme in GSH metabolism that regulates intracellular GSH levels in response to extracellular GSH (GSH(o)). The objective of this study was to identify the role of gamma-GT in reversing pathogenic K(+) channel remodeling in the diseased heart. Chronic ventricular dysfunction was induced in rats by myocardial infarction (MI), and studies were done after 6-8 wk. Biochemical assays of tissue extracts from post-MI hearts revealed significant increases in gamma-GT activity in left ventricle (47%) and septum (28%) compared with sham hearts, which paralleled increases in protein abundance and mRNA. Voltage-clamp studies of isolated left ventricular myocytes from post-MI hearts showed that downregulation of transient outward K(+) current (I(to)) was reversed after 4-5 h by 10 mmol/l GSH(o) or N-acetylcysteine (NAC(o)), and that the effect of GSH(o) but not NAC(o) was blocked by the gamma-GT inhibitors, acivicin or S-hexyl-GSH. Inhibition of gamma-glutamylcysteine synthetase by buthionine sulfoximine did not prevent upregulation of I(to) by GSH(o), suggesting that intracellular synthesis of GSH was not directly involved. However, pretreatment of post-MI myocytes with an SOD mimetic [manganese (III) tetrapyridylporphyrin] and catalase completely blocked recovery of I(to) by GSH(o). Confocal microscopy using the fluorogenic dye 2',7'-dichlorodihydrofluorescein diacetate confirmed that GSH(o) increased reactive oxygen species (ROS) generation by post-MI myocytes and to a lesser extent in myocytes from sham hearts. Furthermore, GSH(o)-mediated upregulation of I(to) was blocked by inhibitors of tyrosine kinase (genistein, lavendustin A, and AG1024) and thioredoxin reductase (auranofin and 13-cis-retinoic acid). These data suggest that GSH(o) elicits gamma-GT- and ROS-dependent transactivation of tyrosine kinase signaling that upregulates K(+) channel activity or expression via redox-mediated mechanisms. The signaling events stimulated by gamma-GT catalysis of GSH(o) may be a therapeutic target to reverse pathogenic electrical remodeling of the failing heart.


Assuntos
Infarto do Miocárdio/fisiopatologia , Canais de Potássio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Remodelação Ventricular/fisiologia , gama-Glutamiltransferase/metabolismo , Animais , Butionina Sulfoximina/metabolismo , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Glutationa/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxidantes/metabolismo , Oxirredução , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Tiorredoxinas/metabolismo , gama-Glutamiltransferase/genética
20.
Exp Physiol ; 94(7): 815-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395662

RESUMO

The ubiquitous tripeptide glutathione (GSH) is an essential factor in many biological processes, thus its depletion has a major impact on cell function and survival. In this study, we examined regulation of GSH in cardiomyocytes under chronic oxidative stress elicited by myocardial infarction (MI). Cardiac dysfunction was induced in rats by coronary artery ligation, and experiments were conducted in myocytes isolated from non-infarcted left ventricle and septum after 6-8 weeks. Fluorescence microscopy studies using the probe monochlorobimane showed that [GSH] in myocytes from post-MI hearts was 42% less than in sham control hearts (P < 0.05). However, depleted GSH levels were normalized after 5-6 h by an insulin mimetic (bis-peroxovanadium-1,10-phenanthroline, bpV(phen); 10 micromol l(-1)) or by exogenous pyruvate (5 mmol l(-1)). The increase in [GSH] by bpV(phen) was partly inhibited by buthionine sulphoximine (BSO; 50 micromol l(-1)), a blocker of GSH synthesis, and by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU; 100 micromol l(-1)), an inhibitor of glutathione disulphide reductase. By comparison, the effect of pyruvate was not altered by BSO but was completely blocked by BCNU. Studies using inhibitors of signalling cascades indicated that upregulation of [GSH] by bpV(phen) in myocytes from post-MI hearts was mediated by mitogen activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and p38 mitogen-activated protein kinase but not by phosphatidylinositol 3-kinase. The effect of pyruvate was not altered by any kinase inhibitor tested. In cells loaded with the probe TEMPO-9-AC to monitor superoxide anion, baseline fluorescence was 2.3-fold greater in post-MI myocytes than in sham control myocytes (P < 0.05) and was markedly decreased by diphenyleneiodonium (30 micromol l(-1)), an inhibitor of NADPH oxidase, exogenous GSH (10 mmol l(-1)) or bpV(phen). In parallel studies, [GSH] in post-MI myocytes was also normalized by diphenyleneiodonium or exogenous GSH. These data show that GSH is differentially regulated by receptor tyrosine kinase-dependent and -independent agonists that maintain functional GSH levels necessary to neutralize excess generation of reactive oxygen species in the failing heart.


Assuntos
Glutationa/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA